Skip to main content
Log in

Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Though zinc is a plant nutrient at low levels, Zn ions can be highly phytotoxic at higher concentrations found in contaminated soils. Plant growth-promoting rhizobacteria can be used to decrease this toxicity. Indeed, in addition to their role in plant-growth promotion, rhizobacteria also reduce the toxicity of heavy metals. In turn, they can be effective for crops grown in metal-contaminated soils. Here, we isolated a zinc-tolerant plant growth-promoting rhizobacterium, Rhizobium species RL9, from a zinc-contaminated soil and assayed its plant growth-promoting activities in vitro. We found that the rhizobacterium strain RL9 tolerated zinc up to a concentration of 400 μg mL−1 on yeast extract mannitol agar medium. It produced 33 μg mL−1 of indole acetic acid in Luria Bertani broth at 100 μg mL−1 of tryptophan and was positive for siderophore, hydrogen cyanide and ammonia. Such phytohormones released by this strain could help in promoting the growth of legumes. We further tested the effect of rhizobacterium strain RL9 on lentils grown in zinc-amended soil. We found that when the rhizobacterium strain RL9 was added to soil contaminated with Zn at 4890 mg/kg, lentil dry matter increased by 150%, nodule numbers by 15%, nodule dry mass by 27%, leghaemogloblin by 30%, seed yield by 10% and grain protein by 8%, compared with uninoculated plants. We also found that the concentration of zinc was higher in uninoculated plant organs than in the inoculated counterpart. Our findings thus suggest that rhizobacterium strain RL9 could be exploited for bacteria-assisted reduction of zinc toxicity in zinc-contaminated soils due to its intrinsic abilities of expressing growth-promoting substances and reduction of the toxic effects of zinc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad F., Ahmad I., Khan M.S. (2006) Screening of free — living rhizospheric bacteria for their multiple plant growth promoting activities, Microbiol. Res. DOI: 1016/j. Micres. 2006.04.001.

  • Alexander D.B., Zuberer D.A. (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria, Biol. Fert. Soils 12, 39–45.

    Article  CAS  Google Scholar 

  • Antoun H., Beauchamp C.J., Goussard N., Chabot R., Lalande R. (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.), Plant Soil 204, 57–67.

    Article  CAS  Google Scholar 

  • Arora N.K., Kang S.C., Maheshwari D.K. (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their bio-control potential against Macrophomina phaseolina that causes charcoal rot of groundnut, Curr. Sci. 81, 673–677.

    Google Scholar 

  • Asada K. (1994) Production and action of active oxygen species in photosynthetic tissues, in: Foyer C.H., Mullineaux P.M. (Eds.), Causes of photooxidative stress and amelioration of defense systems in plants, CRC Press, Boca Raton, pp. 77–104.

    Google Scholar 

  • Assche F. Van, Clijsters H. (1990) Effects of metals on enzyme activity in plants, PL Cell Environ. 13, 195–206.

    Article  Google Scholar 

  • Ayanaba A., Asanuma S., Munns D.N. (1983) An agar plate method for rapid screening of Rhizobium for tolerance to acid-aluminium stress, Soil Sci. Soc. Am. J. 17, 254–258.

    Google Scholar 

  • Aziz O., Inam A., Samiullah Siddiqi A.H. (1996) Long-term effects of irrigation with petrochemical industry wastewater, J. Environ. Sci. Healt. Part A 31, 2595–2620.

    Article  Google Scholar 

  • Bakker A.W., Schipper B. (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation, Soil Biol. Biochem. 19, 451–457.

    Article  CAS  Google Scholar 

  • Becker D., Stanke R., Fendrik I., Frommer W.B., Vanderleyden J., Kaiser W.M., Hedrich R. (2002) Expression of the NH4−+ transporter gene LEAMT1;2 is induced in tomato roots upon association with N2-fixing bacteria, Planta 215, 424–429.

    Article  PubMed  CAS  Google Scholar 

  • Bisessar S., Rinne R.J., Potter J.W. (1983) Effect of heavy metals and Meloidogyne hapla on celery grown on organic soil near nickel refinery, Plant Dis. 67, 11–14.

    Article  CAS  Google Scholar 

  • Brick J.M., Bostock R.M., Silversone S.E. (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane, Appl. Environ. Microbiol. 57, 535–538.

    Google Scholar 

  • Broos K., Beyens H., Smolders E. (2005) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant, Soil Biol. Biochem. 37, 573–579.

    Article  CAS  Google Scholar 

  • Chaudri A.M., Allain C.M., Barbosa-Jefferson V.L., Nicholson F.A., Chambers B.J., McGrath S.P. (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long-term field experiment, Plant Soil 22, 167–179.

    Article  Google Scholar 

  • Chitra R.S., Sumitra V.C., Yash D.S. (2002) Effect of different nitrogen sources and plant growth regulators on glutamine synthetase and glutamate synthase activities of radish cotyledons, Bulg. J. Plant Physiol. 28, 46–56.

    Google Scholar 

  • Cunningham S.D., Berri W.R., Haung J.W (1995) Phytoremediation of contaminated soil, Trends Biotechnol. 134, 393–397.

    Article  Google Scholar 

  • Delorme T.A., Gagliardi J.V., Angle J.S., Berkum van P., Chaney R.L. (2003) Phenotypic and genetic diversity of rhizobia isolated from nodules of clover grown in a zinc and cadmium contaminated soil, Soil Sci. Soc. Am. J. 67, 1746–1754.

    Article  CAS  Google Scholar 

  • Duhan J.S., Dudeja S.S., Khurana A.L. (1998) Siderophore production in relation to N2 fixation and iron uptake in Pigeon Pea-Rhizobium symbiosis, Folia Microbiol. 43, 421–426.

    Article  CAS  Google Scholar 

  • Dye D.W. (1962) The inadequacy of the usual determinative tests for the identification of xanthomonas spp., Nzt. Sci. 5, 393–416.

    Google Scholar 

  • Faisal M., Hasnain S. (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants, Lett. Appl. Microbiol. 43, 461–466.

    Article  PubMed  CAS  Google Scholar 

  • Genrich LB., Dixon D.G., Glick B.R. (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants, Can. J. Microbiol. 46, 237–245.

    Article  Google Scholar 

  • Gupta D.K., Rai U.N., Sinha S., Tripathi R.D., Nautiyal B.D., Rai P., Inouhe M. (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. grown under fly-ash stress condition, Bull. Environ. Contain. Toxicol. 73, 424–431.

    Article  CAS  Google Scholar 

  • Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., Willams S.T. (1994) Bergeys Manual of Determinative Bacteriology, 9th ed. Williams and Wilkins, USA.

    Google Scholar 

  • Ibekwe A.M., Angle J.S., Chaney R.L., Berkum van P. (1995) Sewage sludge and heavy metal effects on nodulation and nitrogen fixation of legumes, J. Environ. Qual. 24, 1199–1204.

    Article  CAS  Google Scholar 

  • Ibekwe A.M., Angle J.S., Chaney R.L., Van Berkum P. (1996) Zinc and cadmium toxicity to alfalfa and its microsymbiont, J. Environ. Qual. 25, 1032–1040.

    Article  CAS  Google Scholar 

  • Iswaran V., Marwah T.S. (1980) A modified rapid Kjeldahl method for determination of total nitrogen in agricultural and biological materials, Geobios. 7, 281–282.

    Google Scholar 

  • Longnecker N.E., Robson A.D. (1993) Distribution and transport of zinc in plants, in: Robson A.D. (Ed.), Zinc in roots and plants, Kluwer Academic Publ. Dordrecht, The Netherlands, pp. 79–91.

    Google Scholar 

  • Mamaril J.C., Paner E.T., Alpante B.M. (1997) Biosorption and desorption studies of chromium (iii) by free and immobilized Rhizobium (BJVr 12) cell biomass, Biodegradation 8, 275–285.

    Article  CAS  Google Scholar 

  • Mcllveen W.D., Negusanti J.J. (1994) Nickel in the terrestrial environment, Sci. Total Environ. 148, 109–138.

    Article  Google Scholar 

  • Mediouni C., Benzarti O., Tray B., Ghorbel M.H., Jemal F. (2006) Cadmium and copper toxicity for tomato seedlings, Agron. Sustain. Dev. 26, 227–232.

    Article  CAS  Google Scholar 

  • Minamisawa K., Fukai K. (1991) Production of indole-3-acetic acid by Bradyrhizobium japonicum: A correlation with genotype grouping and rhizobitoxine production, Plant Cell Physiol. 32, 1–9.

    CAS  Google Scholar 

  • Moffat A.S. (1999) Engineering plants to cope with metals, Sci. 285, 369–370.

    Article  CAS  Google Scholar 

  • Nies D.H. (1999) Microbial heavy metal resistance, Appl. Microbiol. Biotechnol. 51, 730–750.

    Article  PubMed  CAS  Google Scholar 

  • Outten F.W., Outten C.E., O’Halloran T. (2000) Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance, in: Storz G., Hengge Aronis R. (Eds.), Bacterial Stress responses, ASM Press, Washington DC, pp. 29–42.

    Google Scholar 

  • Ouzounidou G.E., Eleftheriou P., Karataglis. (1992) Ecophysiological and ultrastructural effects of copper in Thlaspi Ochroleucum (cruciferae), Can. J. Bot. 70, 947–957.

    Article  CAS  Google Scholar 

  • Rajkumar M., Nagendran R., Kui Jae Lee, Wang Hyu Lee (2005) Characterization of a novel Cr (vi) reducing Pseudomonas sp. with plant growth promoting potential, Curr. Microbiol. 50, 266–271.

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar M., Nagendran R., Kui Jae Lee, Wang Hyu Lee, Sung Zoo Kim (2006) Influence of plant growth promoting bacteria and Cr (vi) on the growth of Indian Mustard, Chemosphere 62, 741–748.

    Article  PubMed  CAS  Google Scholar 

  • Rathore P.S. (2000) Lentil, in: Rathore P.S. (Ed.), Techniques and Management of field crop production, Agrios Publication, New Delhi India, 2000, pp. 336–340.

    Google Scholar 

  • Reeves M.W., Pine L., Neilands J.B., Balows A. (1983) Absence of siderophore activity in Legionella species grown in iron-deficient media, J. Bacteriol. 154, 324–329.

    PubMed  CAS  Google Scholar 

  • Rout G.R., Das P. (2003) Effect of metal toxicity on plant growth and metabolism: 1. Zinc, Agronomie 23, 3–11.

    Article  Google Scholar 

  • Sadasivam S., Manikam A. (1992) Biochemical methods for agricultural sciences, Wiley Eastern Limited, New Delhi India, 1992.

    Google Scholar 

  • Singh P.K., Tewari R.K. (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants, J. Environ. Biol. 24, 107–112.

    PubMed  CAS  Google Scholar 

  • Terry N. (1981) An analysis of the growth responses of Beta vulgaris L. to phytotoxic trace elements. II. Chromium. Final report to the Kearney foundation of soil science, July 1975–June 1980, 1981.

  • Tripathi M., Munot H.P., Shouche Y., Meyer J.M., Goel R. (2005) Isolation and functional characterization of siderophore producing lead and cadmium resistant Pseudomonas putida KNP9, Curr. Microbiol. 50, 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Van Dommelen A., Van Bastelaere E., Keijers V., Vanderleyden J. (1997) Genetics of Azospirillum brasilense with respect to ammonium transport, sugar uptake and chemotaxis, Plant Soil 194, 155–160.

    Article  Google Scholar 

  • Wang P.C., Mori T., Komori K., Sasatsu M., Toda K., Ohtake H. (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions, Appl. Environ. Microbiol. 55, 1665–1669.

    PubMed  CAS  Google Scholar 

  • Wani P.A., Khan M.S., Zaidi A. (2007) Cadmium, chromium and copper in greengram plants, Agron. Sustain. Dev. 27, 145–153.

    Article  CAS  Google Scholar 

  • Zaidi S., Usmani S., Singh B.R., Musarrat J. (2006) Significance of Bacillus subtilis strain SJ-101 as a bio-inoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea, Chemosphere 64, 991–997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Saghir Khan.

About this article

Cite this article

Ahmad Wani, P., Khan, M.S. & Zaidi, A. Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil. Agron. Sustain. Dev. 28, 449–455 (2008). https://doi.org/10.1051/agro:2007048

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2007048

Navigation